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Is mathematics an experimental science? And is
the computer the microscope (or the telescope) of
mathematics? As a young mathematician I was cer-
tainly convinced this was so. Influenced by Kenneth
Iverson (1920-2004), the inventor of the computer
language APL, I saw the computer as an experi-
mental tool that would reveal new mathematical
worlds. As Iverson and others wrote in 1970, with
the use of a computer, “mathematics becomes a lab-
oratory science, open to experiment, conjecture,
and discovery” [1].

Inspired by a 1972 paper of Lang and Trotter [3],
as a teenager I wrote programs to compute the
continued fraction expansion of various algebraic
numbers. After verifying their results, I was natu-
rally led to compute the expansions of other real
numbers. One of the numbers I tried was

1 1 1 1
E+2—2+—+—+--- ,
and I was astonished to find that all the partial quo-
tients (i.e., the terms of the continued fraction)
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were either 1, 2,4, or 6.1 then tried other numbers
of the same form and found similar behavior. Of
course, this demanded an explanation. I eventually
found one, and this led to my first serious published
paper [5].

In this I was following in famous footsteps.
Gauss, for example, was led to conjecture the prime
number theorem by studying the distribution of
primes in published tables. It is clear that experi-
mentation with examples is an important part of
the mathematician’s toolbox. And the computer al-
lows experimentation far beyond the range of hand
calculation.

Yet there was—and still is—resistance to the
computer as a tool. Tymoczko, for example, sug-
gested that the computer-aided solution of the
four-color conjecture in graph theory introduced
a new and fundamentally different form of unre-
liability in mathematical proof [6], [7]. At a recent
conference, when I presented a result on avoid-
ability in combinatorics on words that depended
on a large calculation by computer, a colleague
expressed his dissatisfaction that he could not
verify my theorem entirely by hand. Yet why should
every simple theorem have a simple proof?

Even today, with nearly universal access to com-
puters, many students are unfamiliar (or uncom-
fortable) with the experimental approach. When I
ask my students whether the decimal expansion of
/3 contains three consecutive identical digits,
many are completely stumped how to even begin
to attack the problem. The idea that they should
use a computer to find the first hundred or thou-
sand digits does not occur to them.

So, despite the wide availability of computers,
the experimental approach needs advocates, and
Jonathan Borwein and David Bailey are happy to
step in. In the two books under review (Mathe-
matics by Experiment and Experimentation in

NOTICES OF THE AMS



864

Mathematics
.l Eu B 08B R | matics to be “the methodology of

Mathematics) they develop the value
of this approach in grand style (in
the second book they are joined by
Roland Girgensohn).

In Mathematics by Experiment
they define experimental mathe-

doing mathematics that includes the
use of computations for:

1. Gaining insight and intuition.

2. Discovering new patterns and
relationships.

3. Using graphical displays to sug-
gest underlying mathematical prin-
ciples.

4. Testing and especially falsify-
ing conjectures.

5. Exploring a possible result to see if it is worth
formal proof.

6. Suggesting approaches for formal proof.

7.Replacing lengthy hand derivations with com-
puter-based derivations.

8. Confirming analytically derived results.”

danathen Sormen
Divid Biley

The two books are quite similar in scope, but Math-
ematics by Experiment is more introductory in na-
ture. Experimentation in Mathematics covers some of
the same material but is longer (357 pages versus
288 pages) and takes a deeper, less conversational
approach. Both books emphasize areas where ex-
perimental mathematics has been most successful:
number theory, algebra, and combinatorics.

Mathematics by Experiment covers awide variety
of topics: evaluation of definite integrals, evaluation
of infinite series, the 3x + 1 problem, simplification
of radicals, dilogarithms, hypergeometric functions,
the calculation of 17, normality of real numbers, the
fundamental theorem of algebra, the gamma func-
tion, Stirling’s formula, the arithmetic-geometric
mean, arbitrary precision arithmetic, and integer
relation algorithms. Along the way we get song lyrics
by Tom Lehrer; pictures of sculptures by Helaman
Ferguson; and entertaining quotations from Hardy,
Feynman, Milnor, Darwin, Thurston, and Keynes.
Although undisciplined at times, it is a book that
canbe enjoyed by undergraduates and professional
mathematicians alike.

For deeper applications the reader will want to
continue with Experimentation in Mathematics. Here
the reader will find chapters entitled “Sequences,
Series, Products and Integrals”, “Fourier Series and
Integrals”, “Zeta Functions and Multizeta Functions”,
“Partitions and Powers”, “Primes and Polynomials”,
“The Power of Constructive Proofs II”, and “Numer-
ical Techniques II”. There is also more emphasis on
theorems and proofs.

To illustrate the game, let’s look at two basic
tools of experimental mathematics: sequence recog-
nition and real number recognition.
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Sequence recognition comes in handy when
we are given a sequence (a(n)),>1 defined by a
summation formula and we want to find a simpler
expression for it, perhaps in “closed form”. The
traditional mathematical approach would be to
examine the definition for a(n) and manipulate it
in some way, perhaps using familiar tools such
as binomial coefficient identities, changing the
order of summation, etc. An experimental mathe-
matician, however, will simply compute the first
ten or so values of a(n) and then look up the
result in Neil Sloane’s “On-Line Encyclopedia of

Integer Sequences”, available at [http://www.]
research.att.com/ njas/sequences/. With

luck such a search will produce a known closed
form and half a dozen citations to the literature
where the sequence’s properties are discussed.
All that is left to do (!) is prove that our expression
is, indeed, identical to the known representation.
Here a symbolic algebra system, such as Maple,
often proves useful. Depending on the problem
domain, special-purpose tools, such as the Wilf-Zeil-
berger algorithm, can actually prove our result for
us.

This process is illustrated in section 2.2 of Math-
ematics by Experiment. Borwein and Bailey discuss
the observation that if Gregory’s series for T,

(_1)k+1
4> :
=1 2k -1

is truncated after 5,000,000 terms, then the deci-
mal expansion of the result agrees with 7T at many
places, with exceptions occurring with a period of
14. When one examines the coefficients corre-
sponding to the errors at these positions, one finds
the coefficients are 2,-2,10,-122,2770,.... Di-
viding by 2 and searching Sloane’s table produces
the guess that these are the Euler numbers, and in-
deed one can then find an asymptotic expansion
for
k+1
T, (=1

2 1<k<N/2 2k -1

involving the Euler numbers.
Constant recognition is similar. How, for exam-
ple, could we evaluate

¥ ( kK 1 )?
k = B
=1 kle 21k
An experimental mathematician might simply
compute the sum to twenty digits and then use a
“number recognizer” (such as that at|http://|
|www.cecm.sfu.ca/projects/ISC) to find that
the sum appears to be
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3 2T < ( 2 ) '
Once the form of the result is suspected, a proof
follows (aided by the symbolic algebra system
Maple).

Although I found both books very entertaining,
they each show some signs of being put together
too hastily. Sometimes terms are used before they
are defined. For example, on page 24 of Mathe-
matics by Experiment Borwein and Bailey present
a collection of ten interesting challenges in exper-
imental mathematics. While most will be compre-
hensible to bright undergraduates in mathematics,
the very first says, “Compute the value of r for
which the chaotic iteration x,+1 =rxn(1 — xn),
starting with some xg € (0, 1), exhibits a bifurcation
between 4-way periodicity and 8-way periodicity.”
There is no explanation of the meaning of this
technical jargon, and the reader has to wait until
page 51 to find one.

In the same book, pages 56 and 248 both con-
tain very similar accounts of the discovery that

(o8]
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And Section 1.8.1 of Experimentation in Mathematics
reprises Section 2.2 of Mathematics by Experiment
without adding anything really new (and mistakenly
calls it Section 1.3). More careful editing would
have removed these redundancies.

Also, the scholarship is not as good as it could
be. The authors do not adequately address the in-
fluence of experimental pioneers such as Derrick
Lehmer [4] or Horst Zimmer [8]. In fact, none of the
papers in the bibliography below are cited in either
of the two books.

As I said at the beginning of this review, as a
young man I believed strongly in the gospel of
experimental mathematics. And it is certainly true
that this approach has led to dozens of interesting
new directions in combinatorics, number theory,
and algebra. Do I still believe? Yes. Experimental
mathematics is, and will continue to be, very fruit-
ful. But let me offer three caveats.

First, mindless computation can be counterpro-
ductive. I often see queries on electronic mailing
lists devoted to mathematics of the form “Iwrote a
program to verify the following property for the
firstbillion integers. Is it always true?” immediately
answered by someone else who gives a one-line
proof of the property. Time used thinking—away
from the computer—is often time well spent. As
H. H. Williams remarked, “Furious activity is no
substitute for understanding.”

Second, naive computation can lead to incorrect
conjectures. For example, computers typically (but
not always) represent real numbers using floating-
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point numbers, and careless com-
putation with these approximations
can have surprisingly bad results—

a fact well known to numerical ana- m ]
lysts for years [2]. To their credit,
Borwein, Bailey, and Girgensohn rec-
ognize this and even give some en-
tertaining examples in a section of
Experimentation in Mathematics en-
titled “High Precision Fraud”. Does

> 107" ntanh(m)]

nx>1

really equal 1/817? No, but you won’t
find the answer by computing the
first two hundred digits.

Third, experimental mathemat-
ics has its limits. Experimental math-
ematics probably would not have led to a proof of
Godel’s theorem or the Poincaré conjecture. And
how, for example, can it be fruitfully used in Kol-
mogorov complexity, where the objects under dis-
cussion are often uncomputable in a formal sense?

Still, experimental mathematics is here to stay.
The reader who wants to get an introduction to this
exciting approach to doing mathematics can do no
better than these interesting books.
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